Range Search In Parallel Using Distributed Data Structures

Radhakrishnan Sridhar, Sitharama S. Iyengar, Subbiah Rajanarayanan

Department of Computer Science
Louisiana State University
Baton Rouge, LA 70803, USA.

ABSTRACT

The range search problem is to obtain a set of data points
(tuples, records) satisfying a query which specifies a range of
values on each dimension (attribute) of the data. Range
search has important applications in the areas of databases and
computational geometry. A parallel algorithm for range
searching is developed here using the concept of distributed
data structures. We use the range tree proposed by Bentley as
our data structure to be distributed. We show that @ (logn)
search time can be effected for a range search on n 3-
dimensional points using (2.1og% ~ 10.logn + 12) processors
and this is optimal for the range tree distribution. We present
a mnon-trivial implementation technique on the hypercube
parallel architecture with which the above time and processor
bound can be achieved without any communication overhead.
Our algorithm can easily be generalized for the case of d-
dimensional range search.

Keywords: parallel algorithm, distributed data structures,
range search, hypercube architecture, processor and time com-
plexity

1. Introduction

Let S be a set of n d-dimensional points in R%. A range
query q is a d-range which is the cartesian product of 4 inter-
vals. The output of the query is all points in S that lie within
q. In the case of two dimensions the 2-range is a rectangle
and for more than three dimensions the d -range is a hyperrec-
tangle. Thus, the answer to the query g is a set of all points in
S that are inside the rectangle or hyperrectangle as the case
may be. Range search has several applications including data-
bases and computational geometry [1]. The range search is
equivalent to database selection operator on a relation.

A considerable amount of work has been devoted to the
range search problem [2,3). Bentley [4] gives a thorough
overview of various multi-dimensional and range searching
problems. Several data structures and algorithms for range
searching have been proposed and each has trade-offs between
storage and time complexity. These structures include k-D-
Tree, multidimensional trie, Super-B-tree etc. Bentley and

CH2728-4/90/0000/0014$01.00 © 1990 IEEE

14

Maurer [5) have shown the lower bound on the time complex-
ity of range search on a set of n d-dimensional data to be
(dJogn). With the overlapping-ranges data structure [5] the
time bound of O (d.logn) can be obtained at the expense of
very high storage cost which is O (#¢). Most practical algo-
rithms use a storage cost of 0(nlog"1n) to obtain a time
bound of O (log*~'n) [1]. Layered Range tree data structure
[1] a variant of range tree has the above storage and time com-
plexity; a reduction of O(logn) factor in storage and time
complexity of the range tree. Chazelle [6] using the concept
of filtering search reduced the storage cost to
O (n.log%n lloglogn) while retaining the time complexity.

Recently, there has been a growing interest in developing
parallel algorithms for problems in databases and computa-
tional geometry. This interest has been enhanced due to the
availability of more feasible parallel architectures like the
hypercube and the mesh of processors. Baru and Frieder 71
have developed novel algorithms for the execution of rela-
tional database operations on a hypercube parallel machine.
Algorithms for the execution of the relational Join operator on
the hypercube machine were also given by Omiecinski and
Tien [8]. A number of parallel algorithms for computational
geometry problems can be found in [9, 10, 11, 12, 13].

More recently, Katz and Volper [14] developed a parallel
algorithm for retrieving the sum of values in a region on a two
dimensional grid in O (logn) time with O (n) processors. In
our research, we develop a parallel algorithm for the range
search problem using the range-tree as our data structure. We
will show that the range search on a two dimensional plane
can be effected in O (logn) time with 3/2.logn — 1 processors.
The retrieval of the sum of the values in a two dimensional
region can also be done with the above time and processor
bound.

One of the keys to efficient parallel searching is the dis-
tribution of the data points to be searched. To achieve such an
efficiency we use the concept of distributed data structures.
By distributed data structures we mean a typically large data
structure, such as a B-Tree, K-d tree, Range trec and others,
that is logically a single entity but that has been distributed
over several independent processor stores. This concept is not

new and frequently arises in the area of distributed data bases.
Ellis [15] developed a distributed version of Extendible Hash-
ing for database searching. Distributed data structures of
scientific calculation and processing of sets were introduced in
[16, 17] respectively. One of the fundamental advantages of
the concept of distributed data structure is that processors are
assigned to data statically and overheads due to dynamic allo-
cation is avoided. Also the concept of parallel processing of a
single data structure have occurred in other forms such as con-
current access to a data structure and issues relating to con-
currency control [18].

We will assume that the set S of n d-dimensional points
is stored in a range tree (sec Section 2). We will present a
simple range-tree data distribution scheme and show that the
search algorithm is optimal for this data structure (Section 3).
Let DS(z, 1) denote the best sequential time taken to search a
data structure DS with 1 processor. A parallel algorithm with
p processors is optimal for a data structure DS if the search
time is DS(z, 1)/p. A non-trivial range search implementation
technique on a Hypercube parallel architecture is presented in
Section 4. Section 5. presents an argument for the reduction
on the number of processors used for range searching. Con-
clusions are given in Section 6.

2. The Range Tree data structure

The range tree was first introduced by Bentley after
which several variants have been proposed. We will first
introduce the 2-dimensional range tree. The generalization to
d dimensions can be easily visualized. Let S be the set of n
2-dimensional points. First sort the n points based on the
value of the x-coordinate. Imagine each point p as an interval
[x;, x;], where the first and second components are B[p]
(begin point) and E[p] (end point). Now, the range-tree
corresponding to the first dimension is a rooted binary-tree
whose leaves contain the n points sorted and placed from left
to right as intervals. An interior node v and its left (v;) and
right (v,) children has an associated interval with B[v] =
B[v{] and E[v] = E[v,]. Now the second dimensional coor-
dinates i.e., the y-coordinates are stored in the tree as follows.
For each interval I = (B[v], E[v]) belonging to the node v in
the tree, the y-coordinates of the points which project onto the
interval / are stored as a binary-tree and the node v points to
the root of the binary tree. Figures 2.a and 2.b show a set of
points in the plane and its corresponding range tree, respec-
tively. For the case where each point in the plane represents a
value and the range query is to sum the values in a specified
region we need to store the values S, at each node v of the
range tree as follows. Let 7, be the binary tree corresponding
to the y-coordinates at node v. Let £, and t,€ represent the
left-most and the right-most leaves of the binary tree #,. The
value S, stored at node v is the sum of the values of the points
whose x-coordinates and y-coordinates lic in the interval
(BIv], E[v]) and (1,2, 1,°), respectively.

We will now state some properties of the range tree from
[1].

Proposition 2.1: The number of nodes selected in the range
tree during the range search on any dimension is at most
2.logn —2 and there are not more than two nodes selected
from each level of the range tree.l

Proposition 2.2: Range searching of an n-point d-
dimensional file can be effected by an algorithm in time
O((log n)d) using the range-tree technique.l

3. Range tree distribution and parallel algorithm

The key to the success of any parallel algorithm for
range searching is determined by the type of data distribution.
With O (n) processors effective searches can be made, but,
having such large number of processors is highly impractical.
In this section, with range tree as the data structure, we
present a simple data distribution scheme with which O (logn)
search time using (2.log?z — 10.logn +12) processors is
effected for the case of 3-dimensional data points. The tech-
nique we describe can easily be extended to the case of d-
dimensions. We will assume that the root and the leaves of
the tree are at heights h (n =2") and 1, respectively.

3.1 Estimation of processor and time-complexity

‘We now estimate the number of processors required to
search in parallel for the case whend =2 and d = 3.

In Proposition 2.1 we note that at most 2.Jogn — 2 range tree
nodes are selected for any range query on a single dimension.
This tells us that with 2.logn — 2 processors we can search the
next dimension in parallel. Now, the time-complexity is given
by the following simple equation:

Q(1,n)=0(ogn)
Q@2,n)=0Q(,n)+ O (logn) =0 (logn)

Here Q(1,n) is the time taken to search the range tree in
dimension 1. Let us say that another 2.Jlogn —2 processors
are available at each of the selected nodes during the process-
ing of the dimension i. The next dimension i+l can also be
processed in parallel. Generalizing this scheme to d-
dimensions we can see that the time-complexity is now given
by the equation:

Q(1,n)=0(logn)
Qd,n)=0(d-1,n)+ 0 (logn) =0 (d.logn)

The total number of processors (P (4, n)) required to search a
range tree storing n d-dimensional points and achieve the
above time-complexity is given by the equation:

P(l,n)=1
P@2,n)=2logn -2
P(d,n)=P(d-1,n) (2ogn —2) = O (log®'n)

A simple observation that at most 2 nodes are selected at
cach of the heights from & —2 to 1 (Proposition 2.1) helps to
reduce the above loose processor bound to a great extent. The
number of data points belonging to dimension i stored at node
v at height r in the i — 1-dimension range tree is 2", Let ¢ (v)
be the range tree corresponding to these points. The number
of processors required to do a parallel search on i+1-
dimensional points stored in £(v) is 2.log (2") —2. We now
present the estimation on the number of processors for d = 3.
From arguments above we have,

P@3,n)=2[2.log(2* % -2

+ 2log (2" 3 -2

+ e
+ 2log 2k~ -1y _2
P(3,n)=2log’n ~10.logn + 12
In the above processor estimation we have not included pro-
cessors needed to search a tree stored in the node v at height
h —1. It is not necessary to have additional processors for
node v, since, if node v is selected during the search none of
the nodes in the subtree rooted at v will be selected. Note that
with at most 2.logn — 4 processors the node v can be pro-
cessed. There are log?n —S5.logn + 6 processors assigned to
the nodes of the subtree rooted at v and they are sufficient to
process the tree belonging to node v. We now give a set of
equations with which we can estimate the number of proces-
sors needed to search d-dimensional data.

Let Ty denote a complete binary tree on »-nodes with height
h (2" = n). The root of T, be at height A and leaves are at
height 1. Let T; denote a complete binary subtree on 2*~%
nodes and a, ay, a,, etc. are integer constants greater than
zero. We define a function E as follows:

E(m, [al.T; + az.T_,- +..])
=E(m,a,T;)+
E(m,az.Tj)+ s

Fori >0, E(m,aT;)=

aT; if i <2m -4
aTl; +2T; 5+ 2Tj 3+ - + 2.Ty_, otherwise
E(1,Ty=1
EQ,Tp=T,

E@,Tp)=E@,E@-1,Ty))

The number of processors required is obtained by applying the
following function F to every term a.T; in the resultant equa-
tion.

F(aT)=a.(Qlog(@")-2)=24.(h -i ~1)

16

3.2 Distribution of data among processors

In the case of shared memory model data contained in
the range-tree need not be distributed among processors and
idle processors are allocated dynamically to the selected nodes
of the tree. The dynamic assignment of processors to nodes is
an overhead to the system as it has to maintain a list of idle
processors. Assuming that the selected nodes during the pro-
cessing of dimension i is 7, the time taken to assign idle pro-
cessors to the selected nodes is O (7). Other obvious benefits
of data distribution which include recovery and data recon-
struction motivates the need for static assignment of proces-
sors to the nodes of the tree. In the previous subsection we
have determined the upper bound on the number of processors
required to do a parallel range search in O (Jogn) time for the
case of 2- and 3-dimensional data points. We now show how
the processors are actually assigned and give the search stra-
tegy for the above cases. The case of d-dimension is a natural
extension of the approach presented here.

We will call an assignment of processors to the nodes of
the range-tree proper if the number of processors used in the
assignment is less than or equal to the number of processors
estimated in Section 3.1 to achieve a time-complexity of
O (d.logn), for a range search in d-dimensions. We will now
present a proper assignment scheme for the case of 2-
dimensions first. Let T be a 1-dimensional range tree of
height /. Starting with the leaves at height 1 to height A -3,
we will allocate 2 processors to each of the heights, since, at
most two nodes are selected from each of those heights by
Proposition 2.1. If processors p; and p ; are allocated at height
r (1<r £h-3), then starting from the left assign nodes at
height » p; and p j, alternatively. This assignment would
guarantee that the two selected nodes would be in different
processors. Now, let p; and p;j be allocated to height & — 2.
The first and the second pairs of nodes at height A — 2 from
the left are assigned p; and pj, respectively. The two nodes at
height h — 1 are assigned the same processor that are assigned
to their children. The root of T is assigned any of the proces-
sor assigned to its immediate child at height & — 1. The total
number of processors used in the assignment is (2.logn — 2).
To search the third dimension, the tree corresponding to a
node v is assigned new set of processors the same way as
described in the case of 1-dimensional range tree. For two
nodes v, and v,, their trees are assigned with the same set of
processors if processor assigned to v is the same as the pro-
cessor assigned to v,. Thus, the above assignment scheme
uses exactly the same number of processors as estimated in
Section 3.1. Figure 3.a gives the assignment of processors for
the tree in Figure 2.b.

The search strategy is very simple. Each processor
assigned to a node v at height r is responsible for giving the
search message to the appropriate processor at height r — 1.

The search message is sent from a processor v at height » to a
processor at height r — 1 if the query interval does not com-
pletely contain the interval (B{v], E[v]). If the interval con-
tainment is satisfied no more search message is issued from v
and the tree at v is searched next. We know that each proces-
sor is assigned more than one tree node. The node interval to
be chosen for comparison with the query interval and the pro-
cessor to which the search message has to be sent are all done
by the processor with the help of simple array indexes. We
skip the details here.

Theorem 1: The range search on a 2-dimensional and 3-
dimensional sets of n points can be done in O (logn) time
with (2.logn —2) and (2.og’n — 10.logn + 12) processors,
respectively. The sum of values in the range can also be done
for the case of 2-dimension and 3-dimension in O (logn) time
with the above processor bounds.

Proof: The sum of values in a range can be retrieved using
the values S, stored at each node of the range tree (see Section
2.). The rest of the result follows from the discussion above.l

‘We would like to end this section with the note that there
can be more than one proper assignment scheme. Figure 3.b
gives another proper processor assignment scheme for the tree
in Figure 2.b.

4. Range searching on the Hypercube machine.

We will now proceed to give details on how the nodes of
the tree can be mapped on to the hypercube for efficient
searching. First we will present the 2-dimensional case. A
good mapping is one which minimizes the communication
time in the hypercube. Consider the processor assignment dis-
cussed in the previous section. A mapping which takes the i th
processor and maps it to the i th hypercube node would require
a total communication time of O (logn.loglogn), since we
require O (logn) processors for range searching in 2-
dimensions and O (logn) is the height of the range-tree
corresponding to the first dimension. Hence the total search
time for range-searching in two dimensions using a range-tree
on a hypercube would be O (logn.loglogn). We now present a
mapping which would reduce the total search time to O (logn)
on the hypercube.

Consider the assignment of processors as discussed in the
previous section to the nodes of the range tree corresponding
to dimension 1. A processor at height r (p;) after checking its
range will send the search message to another processor at
heightr -1 (p ;). If p; and p ; are adjacent to each other in the
hypercube the communication time is a constant, otherwise, it
can be as high as O (loglogn) the diameter of the hypercube.
We now present a mapping (embedding) technique which
gives constant-time communication time between processors
in adjacent levels of the range tree.

It can be seen that a processor p; at height r is adjacent
to two processors at heights r — 1 and » + 1. Based on the
processor assignment discussed earlier and the adjacency rela-
tionship between processors we form a graph G called the
processor assignment graph.

A processor assignment graph G consists of (2.logn —~2)
nodes and is connected as follows. The graph G consists of 4
chains ¢, ¢,, ¢3, and c4. The chains ¢, and ¢, contains odd
and even numbered processors respectively (will be referred
as odd and even numbered nodes). Two odd or even num-
bered nodes are adjacent in their respective chains iff they
belong to adjacent levels of the range tree. The chain c¢3 (c4)
formed when an edge is drawn from every node a in ¢, (c3)
to every node b in ¢, (c), whenever a and b are in adjacent
tree levels (see Figure 4.a).

We will show in Proposition 4.1 that the graph G cannot
be embedded in the hypercube with dilation 1 (i.e., all adja-
cent nodes in G will not be adjacent when embedded in the
hypercube). For dilation two embedding we require that the
dimension of the cube be O (logn), i.e., with a cube containing
20Uogn) nodes. In this case the expansion, (i.e., the ratio of the
number of hypercube nodes to the number of graph nodes) is
exponential. The processor assignment graph can be embed-
ded onto a binary tree with dilation 3. The binary tree can
then be embedded onto an hypercube with an expansion of
one and a dilation of 3 [19]. Thus, the processor assignment
graph can be embedded onto an optimal hypercube with dila-
tion 6.

Proposition 4.1: The processor adjacency graph G cannot be
embedded on a hypercube with dilation one.

Proof: In a hypercube 2 nodes a and b can be adjacent at
most to the two same set of two nodes ¢ and d. In G two
nodes a and b can be adjacent to the same 4 set of nodes. This
implies either a should be adjacent to b or vice versa. Now,
the dilation is 2.1%

Lemma 4.2: The processor adjacency graph G can be embed-
ded on to an optimal hypercube with dilation 6.

Proof: First we will show the processor adjacency graph G
can be embedded onto a binary tree with dilation 3. Let ¢; @)
refer to the i th element in the jth chain. Make c(2) the root
r of a binary-tree T. Make c,(2) the right child of r and c (1)
and c,(1) the left and right children of ¢»(2). We use the fol-
lowing segment to construct the rest of the tree T'.

1.i=3;
2. Make ¢ (i) the left child of r;
3. p =c ()

4. Make c,(i) the right child of p ;
5. Make ¢ (i + 1) the left child of p;

6. If not all nodes in ¢, has been processed increment i
and GOTO step 3;

Clearly, the above construction would obtain an embedding of
G on to a binary tree with dilation three. Figure 4. gives the
graph G and its corresponding binary-tree representation. The
above segment of code guarantees that two adjacent nodes in
G are at most three distance apart in T. Now, using known
algorithms [19] we can embed T onto an optimal hypercube
with dilation 3. Thus, G can be embedded onto an optimal
hypercube with dilation 6.0

Theorem 2: Theorem 1. holds in the case when the processors
are arranged as an hypercube architecture.

Proof. From Lemma 4.2 it is clear that the communication
time for the search message to travel from one level to the
adjacent one in the range tree is a constant. In the case of 2-
dimensions after embedding G in a hypercube with
(2.logn — 2) nodes, we can easily see that the range search can
be done in O (logn) time. In the case of 3-dimensional range
search the processor bound can be achieved with several
hypercube machines of different sizes as follows. With the
availability of two cubes of size (2.logn —4), two cubes of
size (2.Jogn —5) and so on, the 3-dimensional range search
can be done using a total of (2.log?n — 10.logn + 12) proces-
sors. This is done by embedding each of one of the subtrees
optimally onto their respective hypercubes.ll

It would be interesting to see if given the availability of single
hypercube can the search be carried efficiently. It turns out
that it is possible and for a 3-dimensional range search using
an hypercube with O (log2n) processors.

S. Processor reduction

In this section we will show that (372.logn - 1) proces-
sors are sufficient to effect a range search in O (logn) time for
a set of points in the plane and thus saving ((logn ¥/2 - 1) pro-
cessors. The approach can be generalized to d-dimensions
casily. The processor reduction is illustrated in the following
example. Let T»ss be a range tree with 256 leaves. Time
taken by a single processor to process the tree Ty is in the
worst case 8 units of time. Two T4 trees can be processed
sequentially by a single processor in 8 units of time. This
means that with two processors, the tree Tpss, and two Ty
trees can be processed in 8 units of time instead of using three
processors and still requiring 8 units of time. We will general-
ize the above idea and estimate for a two dimensional range
trec of height 4. The range tree T -2 requires 4 — 2 units of
time. Since there are two such trees at height A — 2, we will
allocate two processors. For similar reasons we have to allo-
cate two processors for each of the heights from & —2 to
(A—2)/2 — 1. For heights from (h—2)/2 to 1 we allocate a sin-
gle processor. The total number of processors allocated to the
entire tree is now (3/2.Jogn — 1). Finding a proper processor

18

assignment scheme with reduced number of processors is
easy.

The estimation on the number of processors mentioned in
Section 3. can further be reduced as the processors allocated
during the processing of dimension i can be used to process
dimension i + 1.

6. Conclusion

The problem of range search was solved in parallel using
the range tree data structure. The nodes of the range tree were
distributed among the processors in such a way that the search
can be carried efficiently in parallel. It can be easily shown
that our our algorithm is optimal for the chosen data structure
in the case of arbitrary dimension d = O (1), from Proposition
1.1. Based on the assignment of processors to the nodes of the
range tree a processor assignment graph was created. The pro-
cessor assignment graph was embedded onto an optimal
hypercube for the execution of the range search without any
communication overhead. Finally, a processor reduction
argument was presented.

Acknowledgements: The authors would like to thank Dr.
Zheng, Dr. Kraft, and Mr. Salil Menon for their comments on
a earlier version of this paper. We are deeply indebted to the
anonymous refrees whose comments greatly enhanced the
presentation of our work.

References

1] Preparata, FP. and Shamos, M.L, *‘Computa-
tional Geometry : An Introduction,” Springer-
Verlag, New York, 1985.

Bentley, JL. and Friedman, J.H,, ‘“‘Data Struc-
tures for Range Searching,”” ACM Surveys, vol.
11, no. 4, December 1979.

Iyengar S.S., Rao N.S.V., Kashyap RL., and
Vaishvani V.X., “Multidimensional Data Struc-
tures: Review and Outlook,”” Advances in Com-
puters, vol. 27, pp. 70-119, 1988.

Bentley, J.L., ‘‘Multidimensional Divide-and-
Conquer,” CACM, vol. 23, no. 4, pp. 214-229,
April 1980.

Bentley, JL. and Maurer, H.A.,, “Efficient
Worst-Case Data Structures for Range Search-
ing,”’ Acta Informatica, vol. 13, pp. 155-168,
1980.

Chazelle, B., “‘Filtering Search: A New Approach

To Query-Answering,”’ Siam J. Comput., vol. 15,
no. 3, pp. 703-724, August 1986.

(2]

31

4

[51

[6]

7

(8]

{91

[10]

{11]

(12]

[13]

(14]

[15]

[16]

[17]

{18]

[19]

Baru, C. K. and Frieder, O., ‘‘Database operations
on Cube-Connected Multicomputer System,’”’
IEEE Trans. on Computers, vol. 38, no. 6, pp.
920-927, June 1989.

Omiecinski, E. and Tien, E., ‘‘A Hash-Based Join
Algorithm for a Cube-Connected Parallel Com-
puter,”’ IPL, vol. 30, pp. 269-275, March 1989.

Atallah, M.J,, Cole, R, and Goodrich, M.T.,
‘‘Cascading Divide-and-Conquer: A Technique
for Designing Parallel Algorithms,’”’” Siam J.
Comput., May 1989.

Dehne, F. and Stojmenovic, 1., “‘An O(yr') Time
Algorithm for the ECDF Searching Problem for
Arbitrary Dimensions on a Mesh-Of-Processors,”’
IPL, vol. 28, 1988.

Miller, R. and Stout, Q. F., “Mesh Computer
Algorithms for Line Segments and Simple

Polygons,”” Int'l Conf. on Parallel Processing,
pp. 282-285, 1987.

Karlsson, R.G. and Overmars, M.H., ‘‘Normal-
ized Divide-and-Conquer: A Scaling Technique
for Solving Multi-Dimensional Problems,’’ IPL,
vol. 26, pp. 307-312, 1987/88.

Stojmenovic, I, ‘‘Computational Geometry on a
Hypercube,”’ Int’l Conf. on Parallel Processing,
pp- 100-103, 1987.

Katz, M.D. and Volper, D.J., ‘‘Geometric
Retrieval in Parallel,”’ Jou. of Parallel and Distri-
buted Computing, vol. 5, pp. 92-102, 1988.

Ellis, C.S., ‘‘Distributed Data Strucutures: A Case
Study,”’ Int'l Conf. on Parallel and Distributed
Computing, 1985.

Scott, L.R., Boyle, J.M., and Bagheri, B., ‘‘Distri-
buted Data Structures for Scientific Computa-
tion,”” Departments of Computer Science and
Mathematics, Pennsylvania State University,
1987.

Mu, Z. and Chen, M.C.,, ‘‘Communication-
Efficient Distributed Data Structures on Hyper-
cube Machines,”’ Department of Computer Sci-
ence, Yale University, 1986.

Lehman, P. and Yao, S.B., ‘‘Efficient locking for
concurrent operations on B-trees,”” ACM TODS,
vol. 6, no. 5, pp. 650-670, December 1981.

Monien, B. and Sudborough, L.H., ‘‘Simulating
Binary Trees on Hypercubes,”’ 3rd AWOC, 1988.

Figure 4.3 - A processor assignment graph

X 1 2 3 . s € 7 [18
Y ° 13 12 17 14 [} 10 16 2
Figure2.a - A setof points in the plane.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2.b - A 2-dimensional Range Tree. Some of the intervals are marked and
the Y-values are shown as a sored armay.

Figure 3.2 - Processor assignment scheme

2 3 4 il 2 3 4 1 2 3 4 1 2 3 4

Figwe3b - Another processor assignment scheme

3 ‘
s 6
7 8
9 10

Figure 4.b - The binary iree embedding
of the processor assignment graph in
Figure 4.2.

